首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313篇
  免费   35篇
  国内免费   46篇
化学   934篇
晶体学   15篇
力学   23篇
综合类   1篇
数学   144篇
物理学   277篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   32篇
  2015年   33篇
  2014年   55篇
  2013年   180篇
  2012年   52篇
  2011年   152篇
  2010年   77篇
  2009年   64篇
  2008年   62篇
  2007年   79篇
  2006年   69篇
  2005年   83篇
  2004年   88篇
  2003年   67篇
  2002年   28篇
  2001年   44篇
  2000年   18篇
  1999年   43篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   10篇
  1992年   2篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1976年   5篇
  1973年   4篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
  1934年   2篇
  1933年   2篇
排序方式: 共有1394条查询结果,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - The thermal behavior of two copper alloys, with 0.2 and 0.5 mass % of Mg, was analyzed after severe plastic deformation processing by Equal Channel...  相似文献   
2.
The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.  相似文献   
3.
A general overview of the development of the uses of light-emitting diodes in analytical instrumentation is given. Fundamental aspects of light-emitting diodes, as far as relevant for this usage, are covered in the first part. The measurement of light intensity is also discussed, as this is an essential part of any device based on light-emitting diodes as well. In the second part, applications are discussed, which cover liquid and gas-phase absorbance measurements, flow-through detectors for chromatography and capillary electrophoresis, sensors, as well as some less often reported methods such as photoacoustic spectroscopy.  相似文献   
4.
Analysis of the odour complexity in food and beverage products demands high resolution approaches for distinguishing individual aroma-impact compound(s), and for assessing their contribution to the global aroma of a sample. This paper aims to review current applications incorporating different advanced separation methodologies, and their roles in achieving high resolution aroma analysis. This includes prior low resolution gas chromatography–olfactometry (GC–O) with fractionation procedures using chemical manipulation, adsorption chromatography and ion exchange separation. Innovative multidimensional gas chromatography (MDGC) arrangements that are appropriately designed with olfactometry are of specific focus here. The revelation of resolved components using these integrated approaches provides significantly improved knowledge of aroma composition in samples.  相似文献   
5.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
6.
Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.  相似文献   
7.
This paper is a review of the recent progress on gas sensors using graphene oxide (GO). GO is not a new material but its unique features have recently been of interest for gas sensing applications, and not just as an intermediate for reduced graphene oxide (RGO). Graphene and RGO have been well known gas-sensing materials, but GO is also an attractive sensing material that has been well studied these last few years. The functional groups on GO nanosheets play important roles in adsorbing gas molecules, and the electric or optical properties of GO materials change with exposure to certain gases. Addition of metal nanoparticles and metal oxide nanocomposites is an effective way to make GO materials selective and sensitive to analyte gases. In this paper, several applications of GO based sensors are summarized for detection of water vapor, NO2, H2, NH3, H2S, and organic vapors. Also binding energies of gas molecules onto graphene and the oxygenous functional groups are summarized, and problems and possible solutions are discussed for the GO-based gas sensors.  相似文献   
8.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   
9.
The self‐assembly properties of N(9)‐(2,3‐dihydroxypropyl adenine) (DHPA), a plausible prebiotic nucleoside analogue of adenosine, were investigated using density functional theory. Two different isomers were considered, and it is found that while both isomers can form a variety of structures, including chains, one of them is also able to form cages and helixes. When these results were put in the context of substrate supported molecular self‐assembly, it is concluded that gas‐phase self‐assembly studies that consider isomer identity and composition not only can aid interpreting the experimental results, but also reveal structures that might be overlooked otherwise. In particular, this study suggest that a double‐helical structure made of DHPA molecules which could have implications in prebiotic chemistry and nanotechnology, is stable even at room temperature. For example electrical properties (energy gap of 4.52eV) and a giant permanent electrical dipole moment (49.22 Debye) were found in our larger double‐helical structure (3.7 nm) formed by 14 DHPA molecules. The former properties could be convenient for construction of organic dielectric‐based devices.  相似文献   
10.
A quantitative study of the surface composition of ferric oxide employing photoemission spectra is presented. It was possible to accurately reproduce the expected composition (Fe2.00±0.05O3) by modeling the background as a combination of Shirley‐type (Shirley–Vegh–Salvi–Castle) and slope backgrounds through the active approach. The line‐shape employed to fit apparent peak asymmetries was the double‐Lorentzian. It was possible to resolve a previously unreported satellite located at ~729 eV. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号